SARALA BIRLA PUBLIC SCHOOL

Birla Knowledge City, Mahilong, Ranchi CLASS-XII (2020-21)

Sub: Mathematics Assignment-2

TRANSPOSE OF MATRIX

Transpose of matrix A: Let A be any matrix, if all row of A is change with their respective column then the obtained Matrix is called transpose of A. It is represented by A^{T} or A^{T} .

 \Rightarrow If order of A is $m \times n$ then order of A^{T} will be $n \times m$

Property of transpose

$$a. \quad \left[A^{T}\right]^{T} = A$$

a.
$$[A^T]^T = A$$
 b. $(A \pm B)^T = A^T \pm B^T$

$$(kB^{T}) = kB^{T}$$

Example: 5

$$A = \begin{bmatrix} 1 & 7 & 4 \\ -1 & -2 & 1 \end{bmatrix} \Rightarrow A^{\mathsf{T}} = \begin{bmatrix} 1 & -1 \\ 7 & -2 \\ 4 & 1 \end{bmatrix}$$

Example: 6 Order of Matrix A is 2 x 3 .what will be the order of A^{T} .

Questions

1. Find the transpose of the matrix $\begin{bmatrix} -1 & 5 & 6 \\ \sqrt{3} & 5 & 6 \\ 2 & 3 & -1 \end{bmatrix}$ 2. If A is a matrix of order 2×3 and B is a matrix of order 2×5 what is the angle of order 3×5 when the order 3×5 when the angle of order 3×5 when the order 3×5 when the angle of order 3×5 when the order 3×5 when th

of order 3 x 5 what is the order of the matrix $(AB)^{T}$

3. Find x, if
$$\begin{pmatrix} 5 & 3x \\ 2y & z \end{pmatrix} = \begin{pmatrix} 5 & 4 \\ 12 & 6 \end{pmatrix}^T$$

4. If $\begin{pmatrix} a+b & 2 \\ 5 & b \end{pmatrix} = \begin{pmatrix} 6 & 5 \\ 2 & 2 \end{pmatrix}^T$, then find a and b.

5. If
$$A = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 2 & 1 \\ 1 & 2 & 3 \end{bmatrix}$, then verify that : **a.** $(A+B)^{'} = A^{'} + B^{'}$ **b.** $(A-B)^{'} = A^{'} - B^{'}$

b.
$$(A - B)' = A' - B$$

6. For the following matrices A and B, verify that $(A \cdot B)' = B' \cdot A' A = \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}$ and $B = [-1 \ 2 \ 1]$

7. If
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
, find $A + A$.

8. $A = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$, then show that A + A = I

9. For the following matrices A and B, find $(AB)^{'}$ and write order of resulting matrix. $A = \begin{vmatrix} -4 \end{vmatrix}$ and

$$B = [-1 \ 2 \ 1]$$

10. If
$$A = \begin{bmatrix} 3 & \sqrt{3} & 2 \\ 4 & 2 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -1 & 2 \\ 1 & 2 & 4 \end{bmatrix}$, verify that

$$\mathbf{a}.(A')$$

b.
$$(A+B)' = A' + B$$

a.
$$(A')$$
 b. $(A+B)' = A'+B'$ **c.** $(kB') = kB'$, where k is any constant.

- 11. If any matrix $A = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$, write AA, where A is transpose of A.
- 12. Find the value of x, y, z if the matrix $A = \begin{bmatrix} 0 & 2y & z \\ x & y & -z \\ x & -y & z \end{bmatrix}$ satisfy the equation A = I.
- 13. If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ then verified that $A^{T}A = I_{2}$ 14. If $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$, then find the value of θ satisfy the equation $A^{T} + A = I$.

SYMMERTIC AND SKEW SYMMETRIC MATRIX

Symmetric matrix: A Matrix which is equal to their transpose called symmetric matrix.

i.e.
$$A = A$$
 Example: $\begin{bmatrix} 1 & 5 \\ 5 & -2 \end{bmatrix}$; $\begin{bmatrix} 6 & 5 & 4 \\ 5 & 5 & -2 \\ 4 & -2 & 7 \end{bmatrix}$ ks A be

Skew-Symmetric matrix: A Matrix which is equal to negative of their transpose called symmetric matrix.

i.e.
$$A' = -A$$
 Example: $\begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix}$; $\begin{bmatrix} 0 & 5 & 4 \\ -5 & 0 & 2 \\ -4 & -2 & 0 \end{bmatrix}$ > Sum or difference of two symmetric symmetric.

Note: Symmetric and skew symmetric matrix is only possible in square matrix.

Property of symmetric and skew symmetric

- ➤ Is A be symmetric or skew symmetric then kA also be symmetric or skew symmetric
- Is A be any symmetric matrix and we add or subtract by constant in each element of A then result is also symmetric (It is not applicable for skew symmetric matrix)
- Sum or difference of two symmetric matrix is
- matrix is skew symmetric.
- > If A be any square matrix then

$$A + A^{T} = \text{symmetric} \quad \text{matrix}$$

$$A - A^{\mathsf{T}} = \mathsf{skew}$$
 symmetric matrix

> Any square matrix can be express as a sum of symmetric or skew symmetric matrix by

using the formula:
$$A = \left(\frac{A + A^{T}}{2}\right) + \left(\frac{A - A^{T}}{2}\right)$$

- 1. Give an example of symmetric and skew symmetric matrix.
- 2. Write a square matrix of order 2 × 2 which is both symmetric and skew symmetric.

- 3. Show that the matrix $\begin{bmatrix} 1 & -1 & 5 \\ -1 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}$ is symmetric matrix.
- 4. Show that the matrix $\begin{bmatrix} 0 & -1 & 5 \\ 1 & 0 & 1 \\ -5 & -1 & 0 \end{bmatrix}$ is skew symmetric matrix.
- 5. Show that matrix $\begin{bmatrix} 2 & -4 & 7 \\ -4 & 8 & 11 \\ 7 & 11 & 3 \end{bmatrix}$ is symmetric and $\begin{bmatrix} 0 & -4 & 8 \\ 4 & 0 & 1 \\ -8 & -1 & 0 \end{bmatrix}$ is skew symmetric.
- 6. For what value of x, is the matrix $A = \begin{bmatrix} 0 & 1 & -2 \\ -1 & 0 & 3 \\ x & -3 & 0 \end{bmatrix}$ a skew symmetric matrix.
- 7. If A and B are symmetric matrices, prove that AB BA skew symmetric matrix.
- 8. If A and B are symmetric matrices of same order, then show that AB symmetric if and only if A and B commute, that is AB = BA.
- 9. Prove that the diagonal element of skew symmetric matrix is zero.
- 10. For the matrix $A = \begin{bmatrix} 1 & 5 \\ 5 & 7 \end{bmatrix}$, verified that
 - **a.** A + A' is a symmetric matrix **b.** A A' is a skew symmetric matrix
- 11. Let A be any square matrix, then show that
 - **a.** A + A' is a symmetric matrix **b.** A A' is a skew symmetric matrix.
- 12. Express the matrix $A = \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$, as the sum of a symmetric and skew symmetric matrix. 13. Let $A = \begin{bmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{bmatrix}$. Express A as a sum of symmetric and skew symmetric matrix.
- 14. Express the following matrix as the sum of a symmetric and skew symmetric matrix $\begin{vmatrix} 3 & -2 & -4 \\ 3 & -2 & -5 \end{vmatrix}$
- 15. Show that the matrix B'AB is symmetric and skew symmetric according as A is symmetric or skew symmetric.

DETERMINANTS

> Determinant is only possible corresponding to a square matrix.

and verify your result.

- > Determinants corresponding to a matrix A is written symbolically |A|.
- > Nu. of rows or Nu. of columns is known as order of the determinants.
- > Each determinants have fixed value which can be find by evaluating it.

Process to evaluate Determinants

■ Determinants of order 2×2

$$\begin{vmatrix} a & c \\ b & d \end{vmatrix} = ad - bc$$
 Example
$$\begin{vmatrix} 1 & 3 \\ 6 & 7 \end{vmatrix} = (7 - 18) = -11$$

■ Determinants of order 1×1; |4| = 4

Minor and cofactor

$$A = \begin{bmatrix} 2 & 1 & 4 \\ 1 & 5 & -3 \\ 4 & -3 & 3 \end{bmatrix}$$

■ Determinants of order 3×3

We can evaluate determinants of 3×3 by the help of any rows and any column with sign of its position

i.e.
$$\begin{vmatrix} + & - & + \\ - & + & - \\ + & - & + \end{vmatrix}$$
.

$$\Rightarrow 3 \begin{vmatrix} 1 & 3 \\ 6 & 7 \end{vmatrix} - 2 \begin{vmatrix} -4 & 3 \\ 0 & 7 \end{vmatrix} + (-5) \begin{vmatrix} -4 & 1 \\ 0 & 6 \end{vmatrix}$$

$$\Rightarrow$$
3(7-18)-2(-28-0)+(-5)(-24-0)

 \Rightarrow 143

Minor: Minor of any element is generally represented by the symbol M_{μ} .

$$M_{12} = \begin{vmatrix} 5 & -3 \\ -3 & 3 \end{vmatrix} = (15 - 9) = 6$$

$$M_{33} = \begin{vmatrix} 2 & 1 \\ 1 & 5 \end{vmatrix} = (10 - 1) = 9$$

Cofactor: minor with sign of its position is called cofactor. It is represented by symbolically $c_{_{\scriptscriptstyle \parallel}}$.

$$C_{ij} = M_{ij}$$
; when $i + j$ is even

$$C_{ij} = -M_{ij}$$
; when $i + j$ odd

$$C_{12} = -\begin{vmatrix} 5 & -3 \\ -3 & 3 \end{vmatrix} = -(15 - 9) = -6$$

$$C_{33} = \begin{vmatrix} 2 & 1 \\ 1 & 5 \end{vmatrix} = (10 - 1) = 9$$

Question based on basic concept of determinant

1. If
$$A = \begin{vmatrix} 1 & 1 & -2 \\ 2 & 1 & -3 \\ 5 & 4 & -9 \end{vmatrix}$$
, find $|A|$.

2. If
$$A = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}$$
, find the value of $3|A|$

3. Evaluate: (i)
$$\begin{vmatrix} \cos 15^{\circ} & \sin 15^{\circ} \\ \sin 75^{\circ} & \cos 75^{\circ} \end{vmatrix}$$
 (ii) $\begin{vmatrix} a+ib & c+id \\ -c+id & a-ib \end{vmatrix}$ (iii) $\begin{vmatrix} 7 & -2 \\ -10 & 5 \end{vmatrix}$

4. Evaluate: (i)
$$\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$
 (ii) $\begin{vmatrix} 0 & \sin \alpha & -\cos \alpha \\ -\sin \alpha & 0 & \sin \beta \\ \cos \alpha & -\sin \beta & 0 \end{vmatrix}$

5. For what value of
$$x$$
, $\begin{vmatrix} 1+x & 7 \\ 3-x & 8 \end{vmatrix}$ is a singular matrix?

For what value of
$$x$$
, $\begin{vmatrix} 1+x & 7 \\ 3-x & 8 \end{vmatrix}$ is a singular **6**. For what value of a , $\begin{pmatrix} 2a & -1 \\ -8 & 3 \end{pmatrix}$ is a singular a ?

7. Find the mirror of element 6 in the determinant
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

8. If
$$A_{i,j}$$
 is the factor of the element $a_{i,j}$ of the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$, then write the value of $a_{i,j}$. $A_{i,j}$

- 9. Find the minor and cofactors of all the elements of the determinant $\begin{bmatrix} 1 & -2 \\ 4 & 3 \end{bmatrix}$
- **10.** Using cofactors of elements of second row, evaluate $\Delta = \begin{bmatrix} 5 & 3 & 8 \\ 2 & 0 & 1 \\ 1 & 2 & 3 \end{bmatrix}$
- 11. Using cofactors of elements of third column, evaluate $\Delta = \begin{bmatrix} 1 & x & yz \\ 1 & y & zx \\ 1 & z & xy \end{bmatrix}$.
- **12.** Find the cofactor of a_{12} in the following: $\begin{vmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{vmatrix}$.
- **13.** If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$, then for any natural number n, find the value of $Det(A^n)$.
- **14.** If $\begin{bmatrix} \sin \alpha & \cos \beta \\ \cos \alpha & \sin \alpha \end{bmatrix} = \frac{1}{2}$, where α , β are the acute angle, then write the value of $\alpha + \beta$.

Properties of determinants

- 1. The value of determinants remain unchanged if its row transformed to their respective column. I.e. |A| = |A|
- If any two row or any two column are interchanged then value of determinants remain same but sign changes.
- **3.** Any two rows or any two column of a determinant are identical the its value will be zero.
- **4.** If all entries in any rows or column of a determinants are Zero then value of determinants will be zero.
- 5. Value of determinants corresponding to a skew symmetric matrix of order 3×3 is zero

6. Is all elements of any row or any column are as sum of two elements then they can be express as sum of two determinants following ways:-

$$\begin{vmatrix} x_1 + x_2 & a & p \\ y_1 + y_2 & b & q \\ z_1 + z_2 & c & r \end{vmatrix} = \begin{vmatrix} x_1 & a & p \\ y_1 & b & q \\ z_1 & c & r \end{vmatrix} + \begin{vmatrix} x_2 & a & p \\ y_2 & b & q \\ z_2 & c & r \end{vmatrix}$$

7. Product with scalar elements:

$$\begin{vmatrix} a & d & g \\ b & e & h \\ c & f & i \end{vmatrix} = \begin{vmatrix} ka & kd & kg \\ kb & ke & kh \\ kc & kf & ki \end{vmatrix}$$

8. $|kA| = k^n |A|$ where *n* is order of determinants.

1. By using properties of determinant evaluate

$$\Delta = \begin{vmatrix} 102 & 18 & 36 \\ 1 & 3 & 4 \\ 17 & 3 & 6 \end{vmatrix}$$

3. If
$$\Delta = \begin{vmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 4 \end{vmatrix}$$
, then show that $|3A| = 27|A|$

5. The value of the determinant of a matrix A of order 3×3 is 4. Find the value of |5A|

2. For
$$\Delta = \begin{bmatrix} 2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7 \end{bmatrix}$$
, verify property I (the

value of determinant remain unchanged if its rows and columns are interchanged)

4. Write the value of the determinant

6. If
$$A = \begin{bmatrix} 0 & i \\ i & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, find the value of $\begin{vmatrix} 2A \end{vmatrix} + \begin{vmatrix} 3B \end{vmatrix}$

7. What is the value of $3 I_3$, where I_3 is the identity matrix of order 3?