

SARALA BIRLA PUBLIC SCHOOL

Birla Knowledge City, Mahilong, Ranchi CLASS-XII, (2020-21)

Sub: Maths

ASSIGNMENT - 1

MATRICES

MATRICES: Matrix is a collection of number arranged in a fixed number of Row or Column. It is simple method to represent any data.

Applications: it is used in solving linear equations, electronic spreadsheet program etc.

General equation of matrix $n \times n$ order

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ a_{31} & a_{32} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

General equation of matrix 3 × 3 order

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

- A horizontal entries are call Rows.
- Vertical entries are called column.
- a_{ij} is General element of i^{th} Row and j^{th} column.
- Order of Matrix: (No of Row) × (No of column)
- Number of elements: the product of nu. of Rows and nu. of columns gives number of element in the matrix. i.e. if any matrix have n rows and m column then the number of element in that matrix is mn.

Example 1
$$\begin{bmatrix} 5 & \sqrt{3} & 6 \\ 5 & -6 & 3/2 \\ 2 & 1 & 0 \\ 1 & 5 & 6 \end{bmatrix}$$

QUESTION BASED OF BASIC CONCEPT OF MATRICES

1. In the matrix
$$\begin{bmatrix} 2 & 5 & 19 & -7 \\ 35 & -2 & 5/2 & 12 \\ \sqrt{3} & 1 & -5 & 17 \end{bmatrix}$$
, write:

a. The order of matrix, **b.** the number of elements, **c.** write the elements a_{13} , a_{21} , a_{33} , a_{24} , a_{23}

2.
$$A = (a_{ij}) = \begin{bmatrix} 2 & 3 & -5 \\ 1 & 4 & 9 \\ 0 & 7 & -2 \end{bmatrix}$$
 and $B = (b_{ij}) = \begin{bmatrix} 2 & 1 & -1 \\ -3 & 4 & 4 \\ 1 & 5 & 2 \end{bmatrix}$, then find $a_{ij} + b_{ij}$

3. Construct a
$$2 \times 2$$
 matrix, $A = [a_{ij}]$, whose element are given by: $\mathbf{a}. \ a_{ij} = \frac{(i+j)^2}{2}$ $\mathbf{b}. \ a_{ij} = \frac{(i+2j)^2}{4}$

- 4. Construct a 3×2 matrix whose element are given by $a_{ij} = \frac{1}{2} |i 3j|$.
- 5. For a 2×2 , matrix $A = [a_{ij}]$ whose elements are given by v, write the value of a_{12}
- 6. Write the element a_{12} of the matrix $A = (a_{ij})_{2x2}$, whose elements a_{ij} are given by $a_{ij} = e^{2ix} \sin jx$.
- 7. If the matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements.
- 8. If the matrix has 8 elements, what are the possible order it can have?

Type of Matrices

1. Row Matrix: Matrix which have only one row called Row Matrix.

2. Column Matrix :- Matrix which have only one column called Column Matrix.

$$\begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix}; \begin{bmatrix} 2/3 \\ -3 \\ 6 \\ 8 \end{bmatrix}$$

3. Square Matrix :- the matrix in which nu. of row is equal to nu. of column called square matrix.

$$\begin{bmatrix} 5 & 6 \\ 1 & -2 \end{bmatrix}; \begin{bmatrix} 2 & 5 & 6 \\ 1 & 2 & 3 \\ -4 & 7 & 6 \end{bmatrix}$$

4. Diagonal Matrix :- A square matrix in which only its diagonal element, element other than diagonal is zero called diagonal matrix.

$$\begin{bmatrix} 5 & 0 \\ 0 & -2 \end{bmatrix}; \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

5. Scalar Matrix :- In a diagonal matrix all its diagonal element are equal called diagonal matrix.

$$\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \; ; \quad \begin{bmatrix} 6 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

6. Identity matrix :- In a diagonal matrix all its diagonal element are unity(1), called Identity matrix.

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2 \quad ; \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

Equality of Matrix

Two matrix are equal if

- i. They have same order
- ii. And have same corresponding elements.

Note: given two matrices A and B are equal, then for solving equate corresponding element.

Example 2
$$\begin{bmatrix} x+y & w+v & -5 \\ \sqrt{5} & x & v \end{bmatrix} = \begin{bmatrix} 12 & 15 & -5 \\ \sqrt{5} & 4 & 9 \end{bmatrix}$$

Solution:

$$x + y = 12$$
, $x = 4$ $w + v = 15$, $v = 9$
 $\Rightarrow 4 + y = 12$ $\Rightarrow w + 9 = 12$
 $\Rightarrow y = 8$ $\Rightarrow w = 3$

Questions

1.
$$\begin{bmatrix} x+3 & z+4 & 2y-7 \\ -6 & a-1 & 0 \\ b-3 & -21 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 6 & 3y--2 \\ -6 & -3 & 2c+2 \\ 2b+4 & -21 & 0 \end{bmatrix}$$
. Find the value of a, b, c, x, y and z

2. Find the value of a, b, c and d from the given equation :
$$\begin{bmatrix} 2a+b & a-2b \\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 11 & 24 \end{bmatrix}.$$

3. If
$$\begin{bmatrix} x-y & z \\ 2x-y & w \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 0 & 5 \end{bmatrix}$$
, find the value of $x+y$.

4. Find the value of
$$a$$
 if
$$\begin{bmatrix} a-b & 2a+c \\ 2a-b & 3c+d \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 5 & 13 \end{bmatrix}$$
.

5. If
$$A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$
, then for what value of α is A an identity matrix?

6. Write the number of all possible matrices of order 1×2 with each entry x and y.

Operations on Matrices

Addition & subtraction

- i. Two matrices can be added or subtracted if both have same order.
- **ii.** Corresponding element is added. And obtained result have also same order.

Note: (i)
$$A + B = B + A$$
 (ii) $(A + B) + C = A + (B + C)$
(iii) $A \pm 0 = A$ (iv) $0 - A = A$

Multiplication with Constant

$$A = \begin{bmatrix} 2 & 2/3 \\ 5 & 4 \\ -2 & 1 \end{bmatrix} \Rightarrow kA = \begin{bmatrix} 2k & 2/3k \\ 5k & 4k \\ -2k & 1k \end{bmatrix}$$

Example 3
$$A = \begin{bmatrix} 7 & 7 \\ 4 & 6 \end{bmatrix}$$
 & $B = \begin{bmatrix} 1 & 10 \\ 3 & 5 \end{bmatrix}$, find: $A + B$ and $A - B$

Solution:

$$A + B = \begin{bmatrix} 7 & 7 \\ 4 & 6 \end{bmatrix} + \begin{bmatrix} 1 & 10 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 4 & 6 \end{bmatrix}$$
$$A - B = \begin{bmatrix} 7 & 7 \\ 4 & 6 \end{bmatrix} - \begin{bmatrix} 1 & 10 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 1 & 1 \end{bmatrix}$$

Questions

1. Given
$$A = \begin{bmatrix} \sqrt{3} & 1 & -1 \\ 2 & 3 & 0 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & \sqrt{5} & 1 \\ -2 & 3 & 1/2 \end{bmatrix}$, find $A + B$.

2.
$$A = \begin{bmatrix} -1 & 0 & 2 \\ 3 & 1 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & -2 & 5 \\ 1 & -3 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 1 & -5 & 2 \\ 6 & 0 & -4 \end{bmatrix}$. Compute $2A - 3B + 4C$

3. Simplify
$$\cos \theta \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} + \sin \theta \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$

4. Find the matrix
$$X$$
 such that $2A + B + X = 0$, where $A = \begin{bmatrix} -1 & 2 \\ 3 & 4 \end{bmatrix}$ & $B = \begin{bmatrix} 3 & -2 \\ 1 & 5 \end{bmatrix}$

5. If
$$3A - B = \begin{bmatrix} 5 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 3 \\ 2 & 4 \end{bmatrix}$, then find the matrix A

6. If
$$A = \begin{bmatrix} 8 & 0 \\ 4 & -2 \\ 3 & 6 \end{bmatrix}$$
 and $B = \begin{bmatrix} 2 & -2 \\ 4 & 2 \\ -5 & 1 \end{bmatrix}$, then find the matrix X such that $2A + 3X = 5B$.

7. Find the value of
$$X$$
 and t if $2\begin{bmatrix} x & z \\ y & t \end{bmatrix} + 3\begin{bmatrix} 1 & -1 \\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5 \\ 4 & 6 \end{bmatrix}$

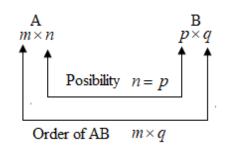
8. Find the value of
$$x + y$$
 from the following equation : $2\begin{bmatrix} x & 5 \\ 7 & y - 5 \end{bmatrix} + \begin{bmatrix} 3 & -4 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 7 & 6 \\ 15 & 14 \end{bmatrix}$

9. Find matrix X and Y if,
$$2X + 3Y = \begin{bmatrix} 2 & 3 \\ 4 & 0 \end{bmatrix}$$
 and $3X + 2Y = \begin{bmatrix} 2 & -2 \\ -1 & 5 \end{bmatrix}$

Multiplication of matrix

Possibility for Multiplication

- $ightharpoonup A_{m imes n}$; $B_{p imes q}$ product AB is possible if n = p .
- ightharpoonup And Result ${}_{AB}$ have order ${}_{m \times q}$



Properties of multiplication of matrices

$$i) \quad A(BC) = (AB)C$$

$$ii) A(B+C) = AB + BC$$

$$iii) (A+B)C = AC + BC$$

Note:

 \Rightarrow Product of matrices is not commutative i.e.

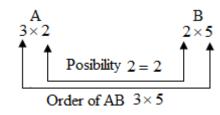
$$AB \neq BA$$

For matrix A and B $(A + B) \neq A^2 + 2AB + B^2$ because $AB \neq BA$. But if given AB = BAthen only apply the formula:

$$(A + B) = A^2 + 2AB + B^2$$

Example 4 : Two matrix A and B have order 3×2 and 2×5 respectively, then find order of AB and BA.

Solution:



Questions

- **1.** If A is the Matrix of order 3×4 and B is matrix of order 4×3 , then find the order of (AB)...
- 2. Let $A = (a_{ij})_{m \times 3}$; $B = (b_{ij})_{p \times 4}$ and $C = (c_{ij})_{2 \times 4}$ are such that $A_{m \times 3} \cdot B_{p \times 4} = C_{2 \times 4}$; then find the value of m and p.
- **3.** Find AB, if $A = \begin{bmatrix} 6 & 9 \\ 2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 6 & 0 \\ 7 & 9 & 8 \end{bmatrix}$
- **4.** Find AB and BA if $A = \begin{bmatrix} 1 & 2 & 4 \\ -1 & -2 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & 0 & -1 \\ 2 & -2 & 6 \\ 1 & 2 & 5 \end{bmatrix}$
- **5.** If $A = \begin{bmatrix} 1 & -1 & 2 & 3 \end{bmatrix}$ $B = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$, Find AB and BA.
- Evaluate: $\begin{bmatrix} 1 & 3 \\ -1 & -4 \end{bmatrix} + \begin{bmatrix} 3 & -2 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}$ 7. Find $A = \begin{bmatrix} 2 & -3 & -5 \\ -1 & 4 & 5 \\ 1 & -3 & -4 \end{bmatrix}$, Find A^2 .
- 8. If $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, verify $A^2 = I$
- 10. If $A = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$ find A^2
- **12.** Find x, if $\begin{bmatrix} x & -5 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ 4 \\ 1 \end{bmatrix} = 0$ **13.** If $A = \begin{bmatrix} 0 & 0 \\ 4 & 0 \end{bmatrix}$, find A^{16}

- 9. If $A = \begin{bmatrix} ab & b^2 \\ -a^2 & -ab \end{bmatrix}$ show that $A^2 = 0$
- 11. $\begin{bmatrix} 2 & 3 \\ 5 & 7 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ -2 & 4 \end{bmatrix} = \begin{bmatrix} -4 & 6 \\ -9 & x \end{bmatrix}$
- **14.** If the matrix $A = \begin{bmatrix} 3 & -3 \\ -3 & 3 \end{bmatrix}$ and $A^2 = \lambda A$, then find the value of λ .
- **15.** Write the value of x + y + z if $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$
- **16.** If matrix $A = \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix}$ and $A^2 = pA$, then write the value of p.
- 17. If $f(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$, show that f(x). f(y) = f(x+y)

18. Let
$$A = \begin{bmatrix} 0 & -\tan\frac{x}{2} \\ \tan\frac{x}{2} & 0 \end{bmatrix}$$
 and I is the identity matrix of order 2 Show that :

$$(I + A) = (I - A) \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}$$

19. Let
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 2 \\ 7 & 4 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 5 \\ 3 & 8 \end{bmatrix}$ find a matrix D such that $CD - AB = O$

20. Find the matrix X so that
$$X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$$